3.1.30 \(\int \frac {(a+b \tanh ^{-1}(c x))^3}{x} \, dx\) [30]

Optimal. Leaf size=184 \[ 2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {PolyLog}\left (2,1-\frac {2}{1-c x}\right )+\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {PolyLog}\left (2,-1+\frac {2}{1-c x}\right )+\frac {3}{2} b^2 \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (3,1-\frac {2}{1-c x}\right )-\frac {3}{2} b^2 \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (3,-1+\frac {2}{1-c x}\right )-\frac {3}{4} b^3 \text {PolyLog}\left (4,1-\frac {2}{1-c x}\right )+\frac {3}{4} b^3 \text {PolyLog}\left (4,-1+\frac {2}{1-c x}\right ) \]

[Out]

-2*(a+b*arctanh(c*x))^3*arctanh(-1+2/(-c*x+1))-3/2*b*(a+b*arctanh(c*x))^2*polylog(2,1-2/(-c*x+1))+3/2*b*(a+b*a
rctanh(c*x))^2*polylog(2,-1+2/(-c*x+1))+3/2*b^2*(a+b*arctanh(c*x))*polylog(3,1-2/(-c*x+1))-3/2*b^2*(a+b*arctan
h(c*x))*polylog(3,-1+2/(-c*x+1))-3/4*b^3*polylog(4,1-2/(-c*x+1))+3/4*b^3*polylog(4,-1+2/(-c*x+1))

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6033, 6199, 6095, 6205, 6209, 6745} \begin {gather*} \frac {3}{2} b^2 \text {Li}_3\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )-\frac {3}{2} b^2 \text {Li}_3\left (\frac {2}{1-c x}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )-\frac {3}{2} b \text {Li}_2\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {3}{2} b \text {Li}_2\left (\frac {2}{1-c x}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )^2+2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )^3-\frac {3}{4} b^3 \text {Li}_4\left (1-\frac {2}{1-c x}\right )+\frac {3}{4} b^3 \text {Li}_4\left (\frac {2}{1-c x}-1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x])^3/x,x]

[Out]

2*(a + b*ArcTanh[c*x])^3*ArcTanh[1 - 2/(1 - c*x)] - (3*b*(a + b*ArcTanh[c*x])^2*PolyLog[2, 1 - 2/(1 - c*x)])/2
 + (3*b*(a + b*ArcTanh[c*x])^2*PolyLog[2, -1 + 2/(1 - c*x)])/2 + (3*b^2*(a + b*ArcTanh[c*x])*PolyLog[3, 1 - 2/
(1 - c*x)])/2 - (3*b^2*(a + b*ArcTanh[c*x])*PolyLog[3, -1 + 2/(1 - c*x)])/2 - (3*b^3*PolyLog[4, 1 - 2/(1 - c*x
)])/4 + (3*b^3*PolyLog[4, -1 + 2/(1 - c*x)])/4

Rule 6033

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
 - c*x)], x] - Dist[2*b*c*p, Int[(a + b*ArcTanh[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x]
 /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6199

Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[
Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Dist[1/2, Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x
))^2, 0]

Rule 6205

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcT
anh[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]

Rule 6209

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a +
b*ArcTanh[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] - Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[k
+ 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (
1 - 2/(1 - c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^3}{x} \, dx &=2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-(6 b c) \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx\\ &=2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )+(3 b c) \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx-(3 b c) \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (2-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx\\ &=2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {Li}_2\left (1-\frac {2}{1-c x}\right )+\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {Li}_2\left (-1+\frac {2}{1-c x}\right )+\left (3 b^2 c\right ) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx-\left (3 b^2 c\right ) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx\\ &=2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {Li}_2\left (1-\frac {2}{1-c x}\right )+\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {Li}_2\left (-1+\frac {2}{1-c x}\right )+\frac {3}{2} b^2 \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_3\left (1-\frac {2}{1-c x}\right )-\frac {3}{2} b^2 \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_3\left (-1+\frac {2}{1-c x}\right )-\frac {1}{2} \left (3 b^3 c\right ) \int \frac {\text {Li}_3\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx+\frac {1}{2} \left (3 b^3 c\right ) \int \frac {\text {Li}_3\left (-1+\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx\\ &=2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {Li}_2\left (1-\frac {2}{1-c x}\right )+\frac {3}{2} b \left (a+b \tanh ^{-1}(c x)\right )^2 \text {Li}_2\left (-1+\frac {2}{1-c x}\right )+\frac {3}{2} b^2 \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_3\left (1-\frac {2}{1-c x}\right )-\frac {3}{2} b^2 \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_3\left (-1+\frac {2}{1-c x}\right )-\frac {3}{4} b^3 \text {Li}_4\left (1-\frac {2}{1-c x}\right )+\frac {3}{4} b^3 \text {Li}_4\left (-1+\frac {2}{1-c x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 178, normalized size = 0.97 \begin {gather*} 2 \left (a+b \tanh ^{-1}(c x)\right )^3 \tanh ^{-1}\left (\frac {1+c x}{-1+c x}\right )+\frac {3}{4} b \left (2 \left (a+b \tanh ^{-1}(c x)\right )^2 \text {PolyLog}\left (2,\frac {1+c x}{1-c x}\right )-2 \left (a+b \tanh ^{-1}(c x)\right )^2 \text {PolyLog}\left (2,\frac {1+c x}{-1+c x}\right )+b \left (-2 \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (3,\frac {1+c x}{1-c x}\right )+2 \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (3,\frac {1+c x}{-1+c x}\right )+b \left (\text {PolyLog}\left (4,\frac {1+c x}{1-c x}\right )-\text {PolyLog}\left (4,\frac {1+c x}{-1+c x}\right )\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x])^3/x,x]

[Out]

2*(a + b*ArcTanh[c*x])^3*ArcTanh[(1 + c*x)/(-1 + c*x)] + (3*b*(2*(a + b*ArcTanh[c*x])^2*PolyLog[2, (1 + c*x)/(
1 - c*x)] - 2*(a + b*ArcTanh[c*x])^2*PolyLog[2, (1 + c*x)/(-1 + c*x)] + b*(-2*(a + b*ArcTanh[c*x])*PolyLog[3,
(1 + c*x)/(1 - c*x)] + 2*(a + b*ArcTanh[c*x])*PolyLog[3, (1 + c*x)/(-1 + c*x)] + b*(PolyLog[4, (1 + c*x)/(1 -
c*x)] - PolyLog[4, (1 + c*x)/(-1 + c*x)]))))/4

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.35, size = 1470, normalized size = 7.99

method result size
derivativedivides \(\text {Expression too large to display}\) \(1470\)
default \(\text {Expression too large to display}\) \(1470\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x))^3/x,x,method=_RETURNVERBOSE)

[Out]

-1/2*I*b^3*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))
^2*arctanh(c*x)^3-3/4*b^3*polylog(4,-(c*x+1)^2/(-c^2*x^2+1))+6*b^3*polylog(4,(c*x+1)/(-c^2*x^2+1)^(1/2))+6*b^3
*polylog(4,-(c*x+1)/(-c^2*x^2+1)^(1/2))+a^3*ln(c*x)+3/2*I*a*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(
1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*arctanh(c*x)^2+1/2*I*
b^3*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^3*arctanh(c*x)^3-3/2*I*a*b^2*Pi*csgn(I*((
c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)^2-3/2*I
*a*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*a
rctanh(c*x)^2+1/2*I*b^3*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+
1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*arctanh(c*x)^3-3/2*a^2*b*dilog(c*x)-3/2*a^2*b*dilog(c*x+1)+3/
2*a*b^2*polylog(3,-(c*x+1)^2/(-c^2*x^2+1))-6*a*b^2*polylog(3,(c*x+1)/(-c^2*x^2+1)^(1/2))-6*a*b^2*polylog(3,-(c
*x+1)/(-c^2*x^2+1)^(1/2))+b^3*ln(c*x)*arctanh(c*x)^3-b^3*arctanh(c*x)^3*ln((c*x+1)^2/(-c^2*x^2+1)-1)-3/2*b^3*a
rctanh(c*x)^2*polylog(2,-(c*x+1)^2/(-c^2*x^2+1))+3/2*b^3*arctanh(c*x)*polylog(3,-(c*x+1)^2/(-c^2*x^2+1))+b^3*a
rctanh(c*x)^3*ln(1-(c*x+1)/(-c^2*x^2+1)^(1/2))+3*b^3*arctanh(c*x)^2*polylog(2,(c*x+1)/(-c^2*x^2+1)^(1/2))-6*b^
3*arctanh(c*x)*polylog(3,(c*x+1)/(-c^2*x^2+1)^(1/2))+b^3*arctanh(c*x)^3*ln(1+(c*x+1)/(-c^2*x^2+1)^(1/2))+3*b^3
*arctanh(c*x)^2*polylog(2,-(c*x+1)/(-c^2*x^2+1)^(1/2))-6*b^3*arctanh(c*x)*polylog(3,-(c*x+1)/(-c^2*x^2+1)^(1/2
))-1/2*I*b^3*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)
))^2*arctanh(c*x)^3+3/2*I*a*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^3*arctanh(c*x
)^2+3*a*b^2*ln(c*x)*arctanh(c*x)^2-3*a*b^2*arctanh(c*x)*polylog(2,-(c*x+1)^2/(-c^2*x^2+1))-3*a*b^2*arctanh(c*x
)^2*ln((c*x+1)^2/(-c^2*x^2+1)-1)+3*a*b^2*arctanh(c*x)^2*ln(1-(c*x+1)/(-c^2*x^2+1)^(1/2))+6*a*b^2*arctanh(c*x)*
polylog(2,(c*x+1)/(-c^2*x^2+1)^(1/2))+3*a*b^2*arctanh(c*x)^2*ln(1+(c*x+1)/(-c^2*x^2+1)^(1/2))+6*a*b^2*arctanh(
c*x)*polylog(2,-(c*x+1)/(-c^2*x^2+1)^(1/2))-3/2*a^2*b*ln(c*x)*ln(c*x+1)+3*a^2*b*ln(c*x)*arctanh(c*x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^3/x,x, algorithm="maxima")

[Out]

a^3*log(x) + integrate(1/8*b^3*(log(c*x + 1) - log(-c*x + 1))^3/x + 3/4*a*b^2*(log(c*x + 1) - log(-c*x + 1))^2
/x + 3/2*a^2*b*(log(c*x + 1) - log(-c*x + 1))/x, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^3/x,x, algorithm="fricas")

[Out]

integral((b^3*arctanh(c*x)^3 + 3*a*b^2*arctanh(c*x)^2 + 3*a^2*b*arctanh(c*x) + a^3)/x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {atanh}{\left (c x \right )}\right )^{3}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x))**3/x,x)

[Out]

Integral((a + b*atanh(c*x))**3/x, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^3/x,x, algorithm="giac")

[Out]

integrate((b*arctanh(c*x) + a)^3/x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {atanh}\left (c\,x\right )\right )}^3}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x))^3/x,x)

[Out]

int((a + b*atanh(c*x))^3/x, x)

________________________________________________________________________________________